Research on Piano Curriculum Education and Its Performance Ecosystem Based on Network Flow Optimization

Author:

Wang Huang1

Affiliation:

1. Xiamen University Tan Kah College , Zhangzhou , Fujian , , China .

Abstract

Abstract This paper investigates music education, where an efficient and accurate performance evaluation system in the piano teaching and performance ecosystem is increasingly becoming an essential tool for improving teaching quality and performance level. The objective evaluation of students’ performance skills can be achieved by carefully analyzing piano performances using the network flow optimization technique. This technique optimizes the performance evaluation system’s audio recognition ability by analyzing the piano audio signal and solving the multi-constraint nonlinear optimization problem in a limited time domain. This paper establishes a network flow optimization model, applies the multi-constraint nonlinear optimization technique, and combines the non-negative matrix decomposition and dynamic time regularization algorithm to analyze the piano performance for experiments. After optimization processing, hundreds of piano audio samples were collected, and the audio recognition accuracy was improved by 20%. By optimizing and processing the audio signals from the network stream, the evaluation system could detect polyphony more accurately and track the musical score effectively, improving accuracy and efficiency. Using the non-negative matrix decomposition algorithm, the accuracy of detecting polyphony can reach 85%, while the dynamic temporal regularization algorithm can match the position of the musical score with 95% accuracy. The accuracy of piano performance evaluation is optimized by this network flow optimization method, providing new technical means for music education, and promoting the quality of teaching and performance.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3