Optimized design of robot movement based on fuzzy model minimal repair algorithm

Author:

Liang Ling1

Affiliation:

1. 1 Shanxi Engineering Vocational College , Taiyuan , Shanxi, , China .

Abstract

Abstract For complex working environments, traditional path planning algorithms for mobile robots are inefficient and difficult to get the optimal path. To better solve this problem, this paper introduces the fuzzy model for modeling and analysis. On the basis of elaborating the logical relationship between the T-S fuzzy model and the Kripke structure, the basic model of the robot’s moving path is designed and the map representation of the moving path is constructed. Based on the minimal repair algorithm of the fuzzy model, the virtual path fuzzy rule of the robot movement is established, and the hierarchical fuzzy control system is constructed by combining the robot kinematics movement model, and simulation experiments are carried out to verify the effectiveness of the above method. The state response x 1, x 2 of the hierarchical fuzzy control system realizes zero convergence at 5.12s and 3.91s, respectively, and the zero convergence time of the fuzzy control input is 79.23% lower than that of the Takagi-Sugeno fuzzy system. The lateral error of the hierarchical fuzzy control robot movement is approximately 0.05m, and the path length decreases from 1.38% to 4.37% with the map scale increasing. The use of a fuzzy model minimal repair algorithm can improve the efficiency of robot movement and obtain a relatively optimal path in a shorter time.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3