AIGC Enabling Non-Genetic Design Methods and Practices

Author:

Li Zujian1,Ma Zhehao1,Xu Boshen2,Lei Shanshan2,Cheng Yin2,Xu Feng2

Affiliation:

1. Huzhou University , Huzhou , Zhejiang , , China .

2. Zhejiang Shuren University , Hangzhou , Zhejiang , , China .

Abstract

Abstract Artificial Intelligence Generated Content (AIGC) technology aligns seamlessly with the design requirements of non-genetic heritage, offering a viable pathway for its modernization. This paper delineates the specific design needs of non-genetic heritage and utilizes a diffusion model to create themed images and animations related to this heritage. Additionally, AIGC is employed to enhance the creation of virtual reality interactive imagery. The Long Short-Term Memory (LSTM) network is deployed to classify time-series gesture data, facilitating the training and categorization of Chinese Sign Language (CSL) gestures for virtual interactive engagement with non-heritage themes. We have integrated the AIGC operation process into the theme of non-genetic inheritance, thereby constructing a robust development trajectory for AIGC-enhanced non-genetic heritage. The experimental setup is crafted to ascertain the optimal number of iterations and training durations through the control variable method. We evaluate the efficacy of the diffusion model for anti-implicit writing analysis and the performance of the speech recognition, text dialogue, and text response modules within the non-heritage multimodal interactive framework using Word Error Rate (WER) and Mean Opinion Score (MOS). A descriptive analysis of users’ interactive experiences with non-heritage content is also conducted. The results indicate that the speech recognition module achieved a WER of 0.365, while the text response module garnered an MOS of 4.49 with a standard deviation of 0.56. This multimodal, non-heritage virtual interaction, leveraging multiple modalities, enriches users’ experiences and deepens their understanding and appreciation of non-heritage content. Consequently, this enhances the high-quality development of non-genetic heritage.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3