EEGVision: Reconstructing vision from human brain signals

Author:

Guo Huangtao1

Affiliation:

1. College of Science , China University of Petroleum (East China), Qingdao , Shandong , , China .

Abstract

Abstract The intricate mechanisms elucidating the interplay between human visual perceptions and cognitive processes remain elusive. Exploring and reconstructing visual stimuli from cerebral signals could help us better understand the processes by which the human brain generates visual imagery. However, the inherent complexity and significant noise in brain signals limit current efforts to reconstruct visual stimuli, resulting in low-granularity images that miss details. To address these challenges, this paper proposes EEGVision, a comprehensive framework for generating high-quality images directly from brain signals. Leveraging the recent strides in multi-modal models within the realm of deep learning, it is now feasible to bridge the gap between EEG data and visual representation. This process starts with a time-frequency fusion encoder in EEGVision, which quickly pulls out cross-domain and robust features from EEG signals. We then design two parallel pipelines to align EEG embeddings with image features at both perceptual and semantic levels. The process uses a stable diffusion-trained image-to-image pipeline that combines coarse and fine-grained data to get high-quality images back from EEG data. Both quantitative and qualitative assessments affirm that EEGVision surpasses contemporary benchmarks. This network architecture holds promise for further applications in the domain of neuroscience, aiming to unravel the genesis of human visual perception mechanisms. All code is accessible via https://github.com/AvancierGuo/EEGVision.

Publisher

Walter de Gruyter GmbH

Reference30 articles.

1. Jokanović, V., & Jokanović, B. (2021). Brain-Computer Interface: State-of-Art, Challenges, and the Future. In Artificial Intelligence (pp. 203-227). Chapman and Hall/CRC.

2. Machado, T. A., Kauvar, I. V., & Deisseroth, K. (2022). Multiregion neuronal activity: the forest and the trees. Nature Reviews Neuroscience, 23(11), 683-704.

3. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: a mind-brain perspective. Psychological bulletin, 133(2), 273.

4. Scotti, P., Banerjee, A., Goode, J., Shabalin, S., Nguyen, A., Dempster, A., ... & Abraham, T. (2024). Reconstructing the mind's eye: fMRI-to-image with contrastive learning and diffusion priors. Advances in Neural Information Processing Systems, 36.

5. Bai, Y., Wang, X., Cao, Y. P., Ge, Y., Yuan, C., & Shan, Y. (2023). Dreamdiffusion: Generating high-quality images from brain eeg signals. arXiv preprint arXiv:2306.16934.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3