Study on the Interaction Effects of Risk Factors for Type 2 Diabetes Based on IV Feature Selection and the LightGBM Model

Author:

Yuan Xiaoyong1

Affiliation:

1. School of Mathematics And Computer Science , Tongling University , Tongling , , Anhui , China .

Abstract

Abstract This study aims to explore the predictive strength of interactions among physical examination indicators regarding diabetes risk. It specifically addresses the utilization of the LightGBM polynomial kernel model for early diabetes screening and prognosis. Methods: The study utilized the PolynomialFeatures method to derive high-order interaction data from physical examination indicators. Employing the IV feature selection model, it identified strongly predictive factors, which informed the inputs for the LightGBM polynomial kernel prediction model to predict the risk of diabetes, with the model’s predictive performance evaluated based on the AUC. Results: The LightGBM prediction model, established using high-order factors selected by the IV model for their strong predictive ability, achieved an AUC of 0.9687 (95%CI: 0.9612~0.9762). Conclusion: The LightGBM model, built on high-order interaction factors with robust predictive power, shows significant potential for diabetes risk prediction in populations undergoing physical examinations.

Publisher

Walter de Gruyter GmbH

Reference20 articles.

1. Ma, Y., Kong, X., et al. (2023). Current Status and Trend of the Disease Burden of Diabetes in China. Chinese Journal of Preventive Medicine, 24(04), 281-286.

2. Zhang, Y., He, Y., et al. (2022). Analysis of a Predictive Model for the Incidence Risk of Diabetes in the Elderly Based on Longitudinal Health Examination Data. Geriatric Medicine and Health Care, 28(04), 866-870.

3. Chinese Diabetes Society. (2021). Guidelines for the Prevention and Treatment of Type 2 Diabetes in China (2020 Edition). Chinese Journal of Practical Internal Medicine, 41(08), 668-695.

4. Saaristo, T., Peltonen, M., Lindstrom, J., et al. (2005). Cross-sectional Evaluation of the Finnish Diabetes Risk Score: A Tool to Identify Undetected Type 2 Diabetes, Abnormal Glucose Tolerance and Metabolic Syndrome. Diabetes & Vascular Disease Research, 2, 67-72.

5. Glümer, C., Carstensen, B., Sandbaek, A., et al. (2004). A Danish Diabetes Risk Score for Targeted Screening. Diabetes Care, 27, 727-733.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3