Review on Fabrication and Application of Regenerated Bombyx Mori Silk Fibroin Materials

Author:

Wang Ke12,Ma Qian12,Zhou Hong-Tao1,Zhao Ju-Mei1,Cao Miao3,Wang Shu-Dong1

Affiliation:

1. 1 Jiangsu Province Engineering Research Center of Biomass Functional Textile Fiber Development and Application , Department of Textile and Clothing , Yancheng Polytechnic College , Yancheng , China

2. 2 Research Center for Clean Production of Textile Printing and Dyeing (Wuhan Textile University) , Ministry of Education , Wuhan , China .

3. 3 Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province , College of Material and Textile Engineering , Jiaxing University , Jiaxing , China

Abstract

Abstract Natural silk fiber derived from the Bombyx mori (B. mori) silkworm has long been used as a luxury raw material in textile industry because of its shimmering appearance and durability, and as surgical suture for its high strength and flexibility. Regenerated silk fibroin, as the main protein extracted from the cocoons of the B. mori silkworm, recently has gained considerable attention due to its outstanding properties, including facile processability, superior biocompatibility, controllable biodegradation, and versatile functionalization. Tremendous effort has been made to fabricate silk fibroin into various promising materials with controlled structural and functional characteristics for advanced utilities in a multitude of biomedical applications, flexible optics, electronics devices, and filtration systems. Herein, reverse engineered silk fibroin extraction methods are reviewed, recent advances in extraction techniques are discussed. Fabrication methods of silk fibroin materials in various formats are also addressed in detail; in particular, progress in new fabrication technologies is presented. Attractive applications of silk fibroin-based materials are then summarized and highlighted. The challenges faced by current approaches in production of silk fibroin-based materials and future directions acquired for pushing these favorable materials further toward above mentioned applications are further elaborated.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3