Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination

Author:

Singhvi Ashok1,Stokes Stephen2,Chauhan Naveen1,Nagar Yogesh1,Jaiswal Manoj1

Affiliation:

1. Physical Research Laboratory, Navrangpura, Ahmedabad, India

2. Department of Geography, South Parks Road, Oxford, UK

Abstract

Abstract Measurement of low temperature (90°C–120°C) Thermoluminescence (TL) sensitivity of natural quartz samples subjected to pre-heating and optical stimulation indicate that significant sensitivity changes can occur during measurement of the natural Optically Stimulated Luminescence (OSL). During the measurement of natural signal, the luminescence sensitivity of samples can change by 40%. The sensitivity changes both during the initial preheat and the measurement of natural OSL. The currently used version of Single Aliquot Regeneration (SAR) protocol measures and corrects for the sensitivity changes after preheat and readout of natural OSL. However, it does not take into account the changes in sensitivity during the readout of the natural signal. We therefore developed a correction procedure so that both the natural and the regenerated OSL intensities can be measured and plotted with the same sensitivity and suggest that in the absence of such a correction, a considerable fraction of the SAR based ages could have systematic errors. The correction for the sensitivity is based on the use of sensitivity of 110°C TL quartz peak, which is correlated to OSL signal (Murray and Roberts, 1998). The use of 110°C peak provides a reasonable measure of the changes in OSL sensitivity of quartz. A modified Natural Sensitivity Corrected-SAR (NSC-SAR) procedure, that comprises the measurement of, 1) the TL intensity of 110°C peak for a test dose on sample as received (i.e. natural sample) and, 2) the sensitivity of the 110°C peak of the same sample after the preheat and read out of the natural OSL, is proposed. This ratio, termed as Natural Correction Factor (NCF), then provides a way to correct for sensitivity changes. Results on samples from diverse depositional environments indicated that the NSC-SAR consistently (without exception) provided improved distribution in paleodoses i.e. a lower scatter compared to the standard SAR protocol. In addition, the use of this protocol also resolved anomalous cases where the intensity of natural OSL was significantly above the saturation intensity of the regenerated OSL. Implicitly, this study implies a caution on the use of palaeodoses obtained from single grains as such a correction is not possible in the currently used automated single grain OSL measurement systems. The only way now on will be to analyze aliquots with only a grain on them.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous)

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3