Best proxy to determine firm performance using financial ratios: A CHAID approach

Author:

Yousaf Muhammad1,Dey Sandeep Kumar2

Affiliation:

1. Faculty of Management and Economics , Tomas Bata University in Zlin , Mostni 5139 , Zlin , Czech Republic

2. Faculty of Management and Economics , Tomas Bata University in Zlin , Mostni 5139 , Zlin , Czech Republic , and Czech Mathematical Society , Prague , Czech Republic

Abstract

Abstract The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and manufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm’s performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy’s efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take strategic business decisions and forecast financial performance.

Publisher

Walter de Gruyter GmbH

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3