Analysis of statistical model-based optimization enhancements in Generalized Self-Adapting Particle Swarm Optimization framework

Author:

Zaborski Mateusz1,Okulewicz Michał1,Mańdziuk Jacek1

Affiliation:

1. Faculty of Mathematics and Information Science , Warsaw University of Technology , Poland

Abstract

Abstract This paper presents characteristics of model-based optimization methods utilized within the Generalized Self-Adapting Particle Swarm Optimization (GA– PSO) – a hybrid global optimization framework proposed by the authors. GAPSO has been designed as a generalization of a Particle Swarm Optimization (PSO) algorithm on the foundations of a large degree of independence of individual particles. GAPSO serves as a platform for studying optimization algorithms in the context of the following research hypothesis: (1) it is possible to improve the performance of an optimization algorithm through utilization of more function samples than standard PSO sample-based memory, (2) combining specialized sampling methods (i.e. PSO, Differential Evolution, model-based optimization) will result in a better algorithm performance than using each of them separately. The inclusion of model-based enhancements resulted in the necessity of extending the GAPSO framework by means of an external samples memory - this enhanced model is referred to as M-GAPSO in the paper. We investigate the features of two model-based optimizers: one utilizing a quadratic function and the other one utilizing a polynomial function. We analyze the conditions under which those model-based approaches provide an effective sampling strategy. Proposed model-based optimizers are evaluated on the functions from the COCO BBOB benchmark set.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LQ-R-SHADE: R-SHADE with Quadratic Surrogate Model;Artificial Intelligence and Soft Computing;2023

2. Self-Adapting Particle Swarm Optimization for continuous black box optimization;Applied Soft Computing;2022-12

3. Improving LSHADE by means of a pre-screening mechanism;Proceedings of the Genetic and Evolutionary Computation Conference;2022-07-08

4. Surrogate-Assisted LSHADE Algorithm Utilizing Recursive Least Squares Filter;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3