Complex time management in databases

Author:

Kvet Michal,Matiaško Karol,Kvet Marek

Abstract

AbstractTemporal database is an extension of the concept of standard databases which process only current valid data. Temporal structure is not based only on managing historical data, but it should also model the data, the validity of which will be in the future in special structures. This paper deals with the temporal structure on object level in comparison with the column level temporal data. It describes the principles, required methods, procedures, functions and triggers to provide the functionality of this system. It also defines the possible implementations and offers the solution to get the snapshot of the database or the object whenever during the existence. The reason for column level solution development is based on the heterogeneity of the attributes time. Some attributes, however, do not change their values over the time or are updated very rarely, and therefore it is not necessary to record the new values for these attributes.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference17 articles.

1. C.J. Date, Date on Database. Apress, 2006

2. C.J. Dat, H. Darwen, N.A. Lorentzos, Temporal data and the relational model (Morgan Kaufmann, 2003)

3. C.J. Date, Logic and Databases — The Roots of Relational Theory (Trafford Publishing, 2007)

4. P.N. Hubler, N. Edelweiss, Implementing a Temporal Database on Top of a Conventional Database, 2000, Conference SCCC’ 00, pp. 58–67, 200

5. T. Johnson, R. Weis, Managing Time in Relational Databases (Morgan Kaufmann, 2010)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Model of Ledger Database Management to handle Vehicle Registration;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Natural semantics visualization for domain-specific language;2022 IEEE 16th International Scientific Conference on Informatics (Informatics);2022-11-23

3. Autonomous Temporal Transaction Database;2021 30th Conference of Open Innovations Association FRUCT;2021-10-27

4. Improvement of Data Searching in MongoDB with the Use of Oracle Database;2021 18th International Multi-Conference on Systems, Signals & Devices (SSD);2021-03-22

5. Locating and accessing large datasets using Flower Index Approach;Concurrency and Computation: Practice and Experience;2019-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3