Corrosion and tribological behaviour of Friction Stir Processed AA2024-T351 alloy

Author:

Hari Lakshman R. B.1,Ashwin A.2,Vaira Vignesh R.3,Chand Swaroop C. B.4,Vignesh M.5,Padmanaban R.3

Affiliation:

1. Department of Mathematics , University of Bristol , United Kingdom

2. Senior Engineer, Titan Company Limited , India

3. Department of Mechanical Engineering , Amrita School of Engineering , Coimbatore , Amrita Vishwa Vidyapeetham , India

4. Department of Materials Science and Engineering , Delft University of Technology , Netherlands

5. Quality Assurance Department , CRI Pumps Private Limited , India

Abstract

Abstract AA2024-T351, a heat treatable aluminum alloy, has a high strength to weight ratio and good fracture resistance and has application mainly in the aircraft and aerospace sector. However, the alloy is susceptible to high corrosion because of the secondary phases (Al2Cu) present in the matrix. With an objective to increase the corrosion and wear resistance, Friction Stir Processing is applied to engineer the morphology and dispersion of the Al2Cu phase in the alloy. The friction stir processing trials are performed by varying the tool rotation speed, tool traverse speed, and shoulder diameter, as the properties of the friction stir processed region depend on the proper selection of process parameters. A hybrid linear-radial basis function model is developed to explore the effect of tool rotation speed, tool traverse speed, and shoulder diameter on the grain size, microhardness, corrosion rate, wear rate, and corrosion potential of the friction stir processed AA2024-T351 alloy. The predominant corrosion mechanism and wear regimes in AA2024-T351 alloy are understood from the characterization study on the surface morphology and elemental analysis of the corroded and worn specimens. The optimum friction stir processing parameters that improve the grain refinement, microhardness, corrosion resistance and wear resistance of AA2024-T351 alloy are established.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3