Weighted Dirichlet Process Mixture Models to Accommodate Complex Sample Designs for Linear and Quantile Regression

Author:

Elliott Michael R.1,Xia Xi2

Affiliation:

1. Department of Biostatistics , University of Michigan , 1415 Washington Heights, Ann Arbor, MI 48109, U.S.A.

2. Ford Motor Company , 21931 Michigan Ave, Dearborn, MI 48124, U.S.A.

Abstract

Abstract Standard randomization-based inference conditions on the data in the population and makes inference with respect to the repeating sampling properties of the sampling indicators. In some settings these estimators can be quite unstable; Bayesian model-based approaches focus on the posterior predictive distribution of population quantities, potentially providing a better balance between bias correction and efficiency. Previous work in this area has focused on estimation of means and linear and generalized linear regression parameters; these methods do not allow for a general estimation of distributional functions such as quantile or quantile regression parameters. Here we adapt an extended Dirichlet Process Mixture model that allows the DP prior to be a mixture of DP random basis measures that are a function of covariates. These models allow many mixture components when necessary to accommodate the sample design, but can shrink to few components for more efficient estimation when the data allow. We provide an application to the estimation of relationships between serum dioxin levels and age in the US population, either at the mean level (via linear regression) or across the dioxin distribution (via quantile regression) using the National Health and Nutrition Examination Survey.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. Blackwell, D., and J.B. MacQueen. 1973. “Ferguson Distributions via Polya Urn Schemes.” The Annals of Statistics, 1:353–355. DOI: http://dx.doi.org/10.1214/aos/1176342372.

2. CDC. 2015. National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/nchs/nhanes.htm (accessed January 2015).

3. Chen, Q., M.R. Elliott, and R.J.A. Little. 2010. “Bayesian Penalized Spline Model-Based Inference for Finite Population Proportions in Unequal Probability Sampling.” Survey Methodology, 36:22–34.

4. Chen, Q., M.R. Elliott, and R.J.A. Little 2012. “Bayesian Inference for Finite Population Quantiles from Unequal Probability Samples.” Survey Methodology, 38:203–215.

5. Chen, Q., X. Jiang, E. Hedgeman, K. Knutson, B. Gillespie, B. Hong, J.M. Lepkowski, A. Franzblau, O. Jolliet, P. Adriaens, A.H. Demond, and D.H. Garabrant. 2013. “Estimation of age- and sex-specific background human serum concentrations of PCDDs, PCDFs, and PCBs in the UMDES and NHANES populations.” Chemosphere, 91:817–823. DOI: http://dx.doi.org/10.1016/j.chemosphere.2013.01.078.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3