A development framework for decision support systems in high-performance sport

Author:

Schelling Xavier1,Robertson Sam1

Affiliation:

1. Institute for Health and Sport (iHeS) , Victoria University , Melbourne , Australia

Abstract

Abstract Decision making in sport involves forecasting and selecting choices from different options of action, care, or management. These processes are conditioned by the available information (sometimes limited, fallible, or excessive), the cognitive limitations of the decision-maker (heuristics and biases), the finite amount of available time to make the decision, and the levels of risk and reward. Decision support systems have become increasingly common in sporting contexts such as scheduling optimization, skills evaluation and classification, decision-making assessment, talent identification and team selection, or injury risk assessment. However no specific, formalised framework exists to help guide either the development or evaluation of these systems. Drawing on a variety of literature, this paper proposes a decision support system development framework for specific use in high-performance sport. It proposes three separate criteria for this purpose: 1) Context Satisfaction, 2) Output Quality, and 3) Process Efficiency. Underpinning these criteria there are six specific components: Feasibility, Delivered knowledge, Decisional guidance, Data quality, System error, and System complexity. The proposed framework offers a systematic approach for users to ensure that each of the six components are considered and optimised before, during, and after developing the system. A DSS development framework for high-performance sport should help to improve both short and long term decision-making in a variety of sporting contexts.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3