Detecting Outliers in Cardiopulmonary Exercise Testing Data of Ski Racers – A Comparison of Methods and their Effect on the Performance of Fatigue Prediction

Author:

Baumgartner N.1,Kranzinger C.1,Kranzinger S.1,Snyder C.23,Stöggl T.23,Resch B.45

Affiliation:

1. 1 Salzburg Research Forschungsgesellschaft mbH , Salzburg , Austria

2. 2 Red Bull Athlete Performance Center , Thalgau , Austria

3. 3 Department of Sport and Exercise Science , University of Salzburg , Austria

4. 4 Department of Geoinformatics Z_GIS , University of Salzburg , Austria

5. 5 Center for Geographic Analysis , Harvard University , Cambridge MA , USA

Abstract

Abstract In sports science, cardiopulmonary data is used to assess exercise intensity, performance and health status of athletes and derive relevant target values. However, sensors may produce flawed data and data may include a wide variety of artifacts, which could potentially lead to false conclusions. Thus, appropriate and customized pre-processing algorithms are a vital prerequisite for producing reliable and valid analysis results. To find adequate outlier detection methods for this type of data, we compared three algorithms by applying them on seven ergospirometric measures of junior ski racing athletes and applied a model to predict fatigue during skiing based on the pre-processed data. While values that lie outside a realistic spectrum were consistently labelled as outliers by all methods, and mean values and standard deviations changed in similar ways, methods differed from each other when it comes to changing trends, recurring patterns, and subsequent outliers. Decomposing the sensor data into different components (trend, seasonality, remainder) before dealing with outliers increased average predictive performance the most. However, pre-processing remarkably improved prediction results for certain study participants and not for others. Thus, handling outliers correctly prior to deriving information from ergospirometric data is recommended but more research should be conducted to find methods that achieve more consistent improvement.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3