The application of Machine and Deep Learning for technique and skill analysis in swing and team sport-specific movement: A systematic review

Author:

Leddy Chloe1,Bolger Richard2,Byrne Paul J.3,Kinsella Sharon3,Zambrano Lilibeth1

Affiliation:

1. South East Technological University (Kilkenny Road Campus) , Department of Aerospace & Mechanical Engineering , Kilkenny Rd , Carlow

2. South East Technological University (Cork Road Campus) , Department of Sport & Exercise Science , Waterford , Ireland

3. South East Technological University (Kilkenny Road Campus) , Department of Health & Sport Sciences , Kilkenny Road, Carlow , Ireland

Abstract

Abstract There is an ever-present need to objectively measure and analyze sports motion for the determination of correct patterns of motion for skill execution. Developments in performance analysis technologies such as inertial measuring units (IMUs) have resulted in enormous data generation. However, these advances present challenges in analysis, interpretation, and transformation of data into useful information. Artificial intelligence (AI) systems can process and analyze large amounts of data quickly and efficiently through classification techniques. This study aimed to systematically review the literature on Machine Learning (ML) and Deep Learning (DL) methods applied to IMU data inputs for evaluating techniques or skills in individual swing and team sports. Electronic database searches (IEEE Xplore, PubMed, Scopus, and Google Scholar) were conducted and aligned with the PRISMA statement and guidelines. A total of 26 articles were included in the review. The Support Vector Machine (SVM) was identified as the most utilized model, as per 7 studies. A deep learning approach was reported in 6 studies, in the form of a Convolutional Neural Network (CNN) architecture. The in-depth analysis highlighted varying methodologies across all sports inclusive of device specifications, data preprocessing techniques and model performance evaluation. This review highlights that each step of the ML modeling process is iterative and should be based on the specific characteristics of the movement being analyzed.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3