Decision Support System for Mitigating Athletic Injuries

Author:

Peterson K.D.1,Evans L.C.1

Affiliation:

1. Sports Science Department , University of Iowa , Iowa City , IA USA

Abstract

Abstract The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3