Data Mining in Elite Beach Volleyball – Detecting Tactical Patterns Using Market Basket Analysis

Author:

Wenninger Sebastian1,Link Daniel1,Lames Martin1

Affiliation:

1. Technical University of Munich

Abstract

Abstract Sports coaches today have access to a growing amount of information that describes the performance of their players. Methods such as data mining have become increasingly useful tools to deal with the analytical demands of these high volumes of data. In this paper, we present a sports data mining approach using a combination of sequential association rule mining and clustering to extract useful information from a database of more than 400 high level beach volleyball games gathered at FIVB events in the years from 2013 to 2016 for both men and women. We regard each rally as a sequence of transactions including the tactical behaviours of the players. Use cases of our approach are shown by its application on the aggregated data for both genders and by analyzing the sequential patterns of a single player. Results indicate that sequential rule mining in conjunction with clustering can be a useful tool to reveal interesting patterns in beach volleyball performance data.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Reference41 articles.

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, 487-499, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

2. Ashlock, D. A., Kim, E.Y., & Guo, L. (2005). Multi-clustering: avoiding the natural shape of underlying metrics. In C. H. Dagli et al. (Eds.), Smart Engineering System Design: Vol.15. Neural Networks, Evolutionary Programming, and Artificial Life, (pp. 453-461), ASME Press.

3. Baesens, B., Viaene, S., & Vanthienen, J. (2000) Post-processing of association rules. At The Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'2000). 20 - 23 Aug 2000.

4. Bermingham, L., & Lee, I. (2014). Spatio-temporal sequential pattern mining for tourism sciences. Procedia Computer Science, 29, 379-389.10.1016/j.procs.2014.05.034

5. Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R., & Ramanujam, K. K. (1997). Advanced scout: Data mining and knowledge discovery in NBA data. Data Mining and Knowledge Discovery, 1(1), 121-125.10.1023/A:1009782106822

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3