Formation-based modelling and simulation of success in soccer

Author:

Perl J.1

Affiliation:

1. University of Mainz , Germany

Abstract

Abstract The players’ positions of tactical groups in soccer can be mapped to formation-patterns by means of artificial neural networks (Kohonen, 1995). This way, the hundreds of positional situations of one half of a match can be reduced to about 20 to 30 types of formations (Grunz, Perl & Memmert, 2012; Perl, 2015), the coincidences of which can be used for describing and simulating tactical processes of the teams (Memmert, Lemmink & Sampaio, 2017): Developing and changing formations in the interaction with the opponent activities can be understood as a tactical game in the success context of ball control, space control and finally generating dangerous situations. As such it can be simulated using mathematical approaches like Monte Carlo-simulation and game theory in order to generate optimal strategic patterns. However, in accordance with results from game theory it turns out that in most cases the one optimal strategy does not exist (e.g. see Durlauf & Blume, 2010). Instead, a variety of partial strategies with different frequencies were necessary – an approach that is mathematically interesting but has nothing to do with soccer reality. An alternative approach, which is developed in the following, is to interrupt the strictness of a single strategic concept by creative elements, which improves flexible response to opponent activities as well as prevents from being analyzed by the opponent team. The results of respective simulation reach from improving strategic behaviour to recognizing strategic patterns and in particular to analyzing role and meaning of creative elements.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An individual dribbling control strategy for virtual humans combining kinetic animation and lightweight physics;2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS);2022-12

2. Deep Siamese Metric Learning: A Highly Scalable Approach to Searching Unordered Sets of Trajectories;ACM Transactions on Intelligent Systems and Technology;2022-02-28

3. Strictness vs. flexibility: Simulation-based recognition of strategies and its success in soccer;International Journal of Computer Science in Sport;2021-01-01

4. Quantitative Spielanalyse – den Überblick bei zunehmender Heterogenität der Ansätze behalten;German Journal of Exercise and Sport Research;2019-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3