Speedup of the k-Means Algorithm for Partitioning Large Datasets of Flat Points by a Preliminary Partition and Selecting Initial Centroids

Author:

Romanuke Vadim1ORCID

Affiliation:

1. 1 Polish Naval Academy , Gdynia , Poland

Abstract

Abstract A problem of partitioning large datasets of flat points is considered. Known as the centroid-based clustering problem, it is mainly addressed by the k-means algorithm and its modifications. As the k-means performance becomes poorer on large datasets, including the dataset shape stretching, the goal is to study a possibility of improving the centroid-based clustering for such cases. It is quite noticeable on non-sparse datasets that the resulting clusters produced by k-means resemble beehive honeycomb. It is natural for rectangular-shaped datasets because the hexagonal cells make efficient use of space owing to which the sum of the within-cluster squared Euclidean distances to the centroids is approximated to its minimum. Therefore, the lattices of rectangular and hexagonal clusters, consisting of stretched rectangles and regular hexagons, are suggested to be successively applied. Then the initial centroids are calculated by averaging within respective hexagons. These centroids are used as initial seeds to start the k-means algorithm. This ensures faster and more accurate convergence, where at least the expected speedup is 1.7 to 2.1 times by a 0.7 to 0.9 % accuracy gain. The lattice of rectangular clusters applied first makes rather rough but effective partition allowing to optionally run further clustering on parallel processor cores. The lattice of hexagonal clusters applied to every rectangle allows obtaining initial centroids very quickly. Such centroids are far closer to the solution than the initial centroids in the k-means++ algorithm. Another approach to the k-means update, where initial centroids are selected separately within every rectangle hexagons, can be used as well. It is faster than selecting initial centroids across all hexagons but is less accurate. The speedup is 9 to 11 times by a possible accuracy loss of 0.3 %. However, this approach may outperform the k-means algorithm. The speedup increases as both the lattices become denser and the dataset becomes larger reaching 30 to 50 times.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3