ANN Approach for SCARA Robot Inverse Kinematics Solutions with Diverse Datasets and Optimisers

Author:

Bouzid Rania123ORCID,Gritli Hassène13ORCID,Narayan Jyotindra4ORCID

Affiliation:

1. Laboratory of Robotics, Informatics and Complex Systems (RISC Lab, LR16ES07) , National Engineering School of Tunis, University of Tunis El Manar , BP 37, Le Belvédère , , Tunis , Tunisia

2. Polytechnic School of Tunisia , University of Carthage , B.P. 743 , La Marsa , Tunisia

3. Higher Institute of Information and Communication Technologies , University of Carthage, Technopole of Borj Cédria, Route de Soliman , BP 123, Hammam Chatt , Ben Arous , Tunisia

4. Mechatronics and Robotics Laboratory , Department of Mechanical Engineering , Indian Institute of Technology Guwahati (IITG) , Guwahati , Assam , India

Abstract

Abstract In the pursuit of enhancing the efficiency of the inverse kinematics of SCARA robots with four degrees of freedom (4-DoF), this research delves into an approach centered on the application of Artificial Neural Networks (ANNs) to optimise and, hence, solve the inverse kinematics problem. While analytical methods hold considerable importance, tackling the inverse kinematics for manipulator robots, like the SCARA robots, can pose challenges due to their inherent complexity and computational intensity. The main goal of the present paper is to develop efficient ANN-based solutions of the inverse kinematics that minimise the Mean Squared Error (MSE) in the 4-DoF SCARA robot inverse kinematics. Employing three distinct training algorithms – Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) – and three generated datasets, we fine-tune the ANN performance. Utilising diverse datasets featuring fixed step size, random step size, and sinusoidal trajectories allows for a comprehensive evaluation of the ANN adaptability to various operational scenarios during the training process. The utilisation of ANNs to optimise inverse kinematics offers notable advantages, such as heightened computational efficiency and precision, rendering them a compelling choice for real-time control and planning tasks. Through a comparative analysis of different training algorithms and datasets, our study yields valuable insights into the selection of the most effective training configurations for the optimisation of the inverse kinematics of the SCARA robot. Our research outcomes underscore the potential of ANNs as a viable means to enhance the efficiency of SCARA robot control systems, particularly when conventional analytical methods encounter limitations.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3