Nine-Point Iterated Rectangle Dichotomy for Finding All Local Minima of Unknown Bounded Surface

Author:

Romanuke Vadim1ORCID

Affiliation:

1. Polish Naval Academy , Gdynia , Poland

Abstract

Abstract A method is suggested to find all local minima and the global minimum of an unknown two-variable function bounded on a given rectangle regardless of the rectangle area. The method has eight inputs: five inputs defined straightforwardly and three inputs, which are adjustable. The endpoints of the initial intervals constituting the rectangle and a formula for evaluating the two-variable function at any point of this rectangle are the straightforward inputs. The three adjustable inputs are a tolerance with the minimal and maximal numbers of subintervals along each dimension. The tolerance is the secondary adjustable input. Having broken the initial rectangle into a set of subrectangles, the nine-point iterated rectangle dichotomy “gropes” around every local minimum by successively cutting off 75 % of the subrectangle area or dividing the subrectangle in four. A range of subrectangle sets defined by the minimal and maximal numbers of subintervals along each dimension is covered by running the nine-point rectangle dichotomy on every set of subrectangles. As a set of values of currently found local minima points changes no more than by the tolerance, the set of local minimum points and the respective set of minimum values of the surface are returned. The presented approach is applicable to whichever task of finding local extrema is. If primarily the purpose is to find all local maxima or the global maximum of the two-variable function, the presented approach is applied to the function taken with the negative sign. The presented approach is a significant and important contribution to the field of numerical estimation and approximate analysis. Although the method does not assure obtaining all local minima (or maxima) for any two-variable function, setting appropriate minimal and maximal numbers of subintervals makes missing some minima (or maxima) very unlikely.

Publisher

Walter de Gruyter GmbH

Reference23 articles.

1. [1] M. L. Lial, R. N. Greenwell, and N. P. Ritchey, Calculus with Applications (11th edition). Pearson, 2016.

2. [2] L. D. Hoffmann, G. L. Bradley, and K. H. Rosen, Applied Calculus for Business, Economics, and the Social and Life Sciences. McGraw-Hill Higher Education, 2005.

3. [3] S. A. Vavasis, “Complexity issues in global optimization: A survey,” in Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 2, R. Horst and P. M. Pardalos, Eds. Springer, Boston, MA, 1995, pp. 27–41. https://doi.org/10.1007/978-1-4615-2025-2_2

4. [4] J. Stewart, Calculus: Early Transcendentals (6th edition). Brooks/Cole, 2008.

5. [5] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis. Springer, 1965. https://doi.org/10.1007/978-3-642-88044-5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3