Applying 3D U-Net Architecture to the Task of Multi-Organ Segmentation in Computed Tomography

Author:

Radiuk Pavlo1ORCID

Affiliation:

1. Khmelnytskyi National University , Khmelnytskyi , Ukraine

Abstract

Abstract The achievement of high-precision segmentation in medical image analysis has been an active direction of research over the past decade. Significant success in medical imaging tasks has been feasible due to the employment of deep learning methods, including convolutional neural networks (CNNs). Convolutional architectures have been mostly applied to homogeneous medical datasets with separate organs. Nevertheless, the segmentation of volumetric medical images of several organs remains an open question. In this paper, we investigate fully convolutional neural networks (FCNs) and propose a modified 3D U-Net architecture devoted to the processing of computed tomography (CT) volumetric images in the automatic semantic segmentation tasks. To benchmark the architecture, we utilised the differentiable Sørensen-Dice similarity coefficient (SDSC) as a validation metric and optimised it on the training data by minimising the loss function. Our hand-crafted architecture was trained and tested on the manually compiled dataset of CT scans. The improved 3D UNet architecture achieved the average SDSC score of 84.8 % on testing subset among multiple abdominal organs. We also compared our architecture with recognised state-of-the-art results and demonstrated that 3D U-Net based architectures could achieve competitive performance and efficiency in the multi-organ segmentation task.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3