Predicting COVID-19 Cases on a Large Chest X-Ray Dataset Using Modified Pre-trained CNN Architectures

Author:

Karac Abdulkadir1ORCID

Affiliation:

1. 1 Samsun University , Faculty of Engineering, Software Engineering , Samsun , Turkey

Abstract

Abstract The Coronavirus is a virus that spreads very quickly. Therefore, it has had very destructive effects in many areas worldwide. Because X-ray images are an easily accessible, fast, and inexpensive method, they are widely used worldwide to diagnose COVID-19. This study tried detecting COVID-19 from X-ray images using pre-trained VGG16, VGG19, InceptionV3, and Resnet50 CNN architectures and modified versions of these architectures. The fully connected layers of the pre-trained architectures have been reorganized in the modified CNN architectures. These architectures were trained on binary and three-class datasets, revealing their classification performance. The data set was collected from four different sources and consisted of 594 COVID-19, 1345 viral pneumonia, and 1341 normal X-ray images. Models are built using Tensorflow and Keras Libraries with Python programming language. Preprocessing was performed on the dataset by applying resizing, normalization, and one hot encoding operation. Model performances were evaluated according to many performance metrics such as recall, specificity, accuracy, precision, F1-score, confusion matrix, ROC analysis, etc., using 5-fold cross-validation. The highest classification performance was obtained in the modified VGG19 model with 99.84 % accuracy for binary classification (COVID-19 vs. Normal) and in the modified VGG16 model with 98.26 % accuracy for triple classification (COVID-19 vs. Pneumonia vs. Normal). These models have a higher accuracy rate than other studies in the literature. In addition, the number of COVID-19 X-ray images in the dataset used in this study is approximately two times higher than in other studies. Since it is obtained from different sources, it is irregular and does not have a standard. Despite this, it is noteworthy that higher classification performance was achieved than in previous studies. Modified VGG16 and VGG19 models (available at github.com/akaraci/LargeDatasetCovid19) can be used as an auxiliary tool in slight healthcare organizations’ shortage of specialists to detect COVID-19.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3