Optimal Synthesis of Substituted and Branched Pyrazines via Reaction of Alpha Hydroxy Ketones with Selected Nitrogen Sources

Author:

Ashraf-Khorassani Mehdi1,Coleman William M.2,Dube Michael F.3,Taylor Larry T.1

Affiliation:

1. Department of Chemistry , Virginia Tech, Blacksburg , VA 24061 , USA

2. iii Consulting, 210 Jessamine Street, Conway , SC 29526 , USA

3. R.J. Reynolds Tobacco Company , 950 Reynolds Blvd, Winston Salem , NC 27105 , USA

Abstract

Summary Employment of 1-hydroxy-acetone as a carbon source and NH4OH as a source of base and nitrogen, has enabled arrays of pyrazines to be synthesized. Reaction conditions such as temperature, time, carbon/nitrogen mole ratios and pH were optimized to maximize the quantity of pyrazines, thereby providing the synthesis of at least 19–20 structurally different pyrazines. Addition of amino acids, selected aldehydes, and hydrolyzed tobacco-derived F1 protein has positively impacted the array of pyrazines from both qualitative and quantitative aspects. Results further showed that by changing the carbon source from 1-hydroxy-acetone to 1-hydroxy-2-butanone and/or 2-hydroxy-3-butanone, control of the type of pyrazines being synthesized could be realized in that the qualitative and quantitative distributions of the pyrazine array were shifted to higher molecular weight derivatives. A relatively large scale reaction (1.5 L) employing optimized parameters yielded > 2 g of a diverse array of pyrazines dominated by multiple dimethylpyrazine derivatives. While systematically varying reaction conditions and reagent mole ratios can predictably alter the distribution and yield of pyrazines, the two most overwhelmingly significant factors governing these two pyrazine product characteristics included the structure of the carbon source and the presence or absence of aldehydes and free amino acids.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of α-Hydroxyketone and Pyrazine Syntheses Employing Preliminary Reactions of Glucose and Buffer Solutions;Beiträge zur Tabakforschung International/Contributions to Tobacco Research;2019-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3