Nanostructured device based on coated ZnO layer as a window in solar cell applications

Author:

Mokhtari H.12,Benhaliliba M.12,Boukhachem A.3,Aida M.S.4,Ocak Y.S.5

Affiliation:

1. Physics Faculty , USTOMB University POBOX 1505 Mnaouer, 31130 Oran , Algeria

2. Film Device Fabrication-Characterization and Application FDFCA Research Group USTOMB , 31130 Oran , Algeria

3. Unité de Physique des Dispositifs à Semiconducteurs Université de Tunis El Manar , 2092 Tunis , Tunisia

4. Laboratory of thin films and plasma Mentouri University , 25000 Constantine , Algeria

5. Department of Science, Faculty of Education , Dicle University , Diyarbakır , Turkey

Abstract

Abstract This work highlights some physical properties related to the influence of aluminum, tin and copper incorporation on nanostructured zinc oxide (ZnO:M; M:Al, Sn and Cu) thin films prepared by ultrasonic spray pyrolysis technique (USP) on glass substrate at 350±5 °C. For the as-grown layers, M- to Zn-ratio was fixed at 1.5 %. The effects of metal doping on structural, morphological, optical and electrical properties were investigated. X-ray diffraction pattern revealed that the as-prepared thin films crystallized in hexagonal structure with (0 0 2) preferred orientation. The surface topography of the films was performed by atomic force microscopy. AFM images revealed inhibition of grain growth due to the doping elements incorporation into ZnO matrix, which induced the formation of ZnO nanoparticles. Optical measurements showed a high transparency around 90 % in visible range. Some optical parameters, such as optical band gap, Urbach energy, refractive index, extinction coeffi-cient and dielectric constant were studied in terms of doping element. Particularly, dispersion of refractive index was discussed in terms of both Cauchy and single oscillator model proposed by Wemple and DiDomenico. Cauchy parameters and single oscillator energy E0 as well as dispersion energy Ed were calculated. Finally, electrical properties were investigated by means of electrical conductivity and Hall effect measurements. The measurements confirmed n type conductivity of the prepared thin films and a good agreement between the resistivity values and the oxidation number of doping element. The main aim of this work was the selection of the best candidate for doping ZnO for optoelectronics applications. The comparative study of M doped ZnO (M:Al, Sn and Cu) was performed. High rectifying efficiency of the Al/n-ZnO/p-Si/Al device was achieved and non-ideal behavior was revealed with n > 4.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3