Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity

Author:

Azhagan S. Anbu Chudar1,Kathiravan V.S.1,Priya N. Sathiya2

Affiliation:

1. Department of Physics, Government College of Technology , Coimbatore - 641013 , India

2. Department of Physics, Nehru Institute of Technology , Coimbatore - 641105 , India

Abstract

Abstract The influence of magnesium sulfate as an additive in the nucleation of α and γ-polymorphs of glycine crystallized from aqueous solutions has been explored for the first time. Based on crystallization experiments, it was concluded that lower concentration of magnesium sulfate, say less than 2 g/mL, favors α-nucleation sites, whereas the optimized concentration of magnesium sulfate impurity to yield -nucleation sites is 2 g/mL and above. The nucleation time span (in days), solubility and pH were measured for α- and γ-nucleation sites in the aqueous solutions doped with magnesium sulfate. The glycine polymorphs α- and γ-single crystals were grown by slow solvent evaporation technique at ambient temperature. Crystal habit of glycine polymorphs was investigated and analyzed using goniometry. The unit cell dimensions and space group of the as-grown crystal were identified by single crystal XRD analysis. Both α- and γ-polymorphs of glycine were characterized structurally by powder XRD studies. The percentage of magnesium present in the grown glycine crystals was estimated by inductively coupled plasma optical emission spectrometry elemental analysis (ICP-OES). The nonlinear optical properties of the γ-glycine crystals were examined by Q-switched high energy Nd:YAG laser. The second harmonic generation output efficiency of the as-grown gamma glycine single crystals was computed to be 1.31 times superior than that of the reference material potassium dihydrogen phosphate (KDP).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3