Synthesis and density-functional-theory calculations of electronic band structure of hollow sphere WS2

Author:

Akple Maxwell Selase1,Apevienyeku Holali Kwami1

Affiliation:

1. Mechanical Engineering Department , Ho Technical University , P.O. Box HP 217, Ho , Volta Region, Ghana

Abstract

Abstract A novel and low-cost synthesis of tungsten disulfide (WS2) transition metal dichalcogenide was carried out via gas-solid reaction in a horizontal quartz reactor. In this process, the prepared hollow WO3 precursor was sulfided with CS2 at 550 °C at different durations under N2 gas atmosphere. The as-prepared WS2 samples were formed by substitution of O by S during the sulfidation process. The characterization of these samples was performed employing X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) specific surface area, X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. The characterization results showed that the as-prepared WS2 samples were of high quality and purity. No significant differences were observed in various WS2 samples synthesized during different sulfidation periods. The calculated results obtained from the density functional theory (DFT) indicate that WS2 has an indirect band gap of ca. 1.56 eV, which is in agreement with experimental band gap of ca. 1.50 eV. Combining the experimental and DFT results suggests that the novel method used in the synthesis of WS2 has a potential application for large scale production. The obtained WS2 are of high quality and can be implemented in photocatalysis, catalysis, photovoltaics, optoelectronic devices and photosensor devices.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3