Temperature dependence of the energy band gap of CuSi2P3 semiconductor using PSOPW method

Author:

Abdullah T.G.1,Sami S.A.2,Omar M.S.1

Affiliation:

1. Department of Physics, College of Science , Salahaddin University-Erbil , Kurdistan , Iraq

2. Department of Physics, College of Science , Duhok University , Kurdistan , Iraq

Abstract

Abstract Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is 0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively. Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse of mean bond length.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3