Optimal Reactive Power Dispatch Using Improved Chaotic PSO Algorithm with the Wingbeat Frequency

Author:

Adetona Sunday1,John Michael1,Umar Salmar2

Affiliation:

1. Department of Electrical & Electronics Engineering , University of Lagos , Lagos , Nigeria

2. Earth & Environmental Engineering , Columbia University , New York , United States of America

Abstract

Abstract The importance of reactive power to the economy and security of power systems cannot be overemphasized. For instance, Transmission losses increase when reactive power is unevenly distributed on transmission network; and power quality is affected as well. The cheapest way of reducing these transmission lines losses is via reactive power dispatch approach. This study therefore proposes an Improved Chaotic Particle Swarm Optimization algorithm (ICPSO) with the primary aim of reducing real power transmission line losses while adhering to system constraints. Although the traditional PSO has a fast convergence speed, it falls easily into local optimum and it is slow at the later stage of convergence. The ICPSO is proposed in this research to overcome these shortcomings. The approach combines PSO with chaotic map which increases particles’ diversity, allowing particles to explore the search region more; and a wingbeat frequency component which helps to sustain the rate of convergence of particles. MATPOWER 7.1 in MATLAB 2019a environment was utilized for the implementation. The purported algorithm was examined on IEEE14 and IEEE30 Test Beds respectively. When tried out on IEEE14 Test bed, real power loss was reduced from 13.393 MW to 12.260 MW; whereas real power transmission line loss was brought down from 17.557 MW to 15.977 MW when tried out on IEEE30 Test Bed. In terms of reducing real power transmission lines losses, the simulation results show that the proposed approach performs better when compared with other algorithms.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reactive Power Optimization of Distribution Network with Renewable Energy Based on IAGPSO;2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3