Nanobiotechnology medical applications: Overcoming challenges through innovation

Author:

Singer Anthony123,Markoutsa Eleni123,Limayem Alya13,Mohapatra Subhra435,Mohapatra Shyam S.1235

Affiliation:

1. College of Pharmacy Graduate Programs, University of South Florida , Tampa , FL, USA

2. Department of Internal Medicine , Tampa , FL, USA

3. Center for Research and Education in Nanobioengineering, Morsani College of Medicine University of South Florida , Tampa , FL, USA

4. Department of Molecular Medicine , Tampa , FL, USA

5. James A. Haley VA Hospital , Tampa , FL, USA

Abstract

Abstract Biomedical Nanotechnology (BNT) has rapidly become a revolutionary force that is driving innovation in the medical field. BNT is a subclass of nanotechnology (NT), and often operates in cohort with other subclasses, such as mechanical or electrical NT for the development of diagnostic assays, therapeutic implants, nano-scale imaging systems, and medical machinery. BNT is generating solutions to many conventional challenges through the development of enhanced therapeutic delivery systems, diagnostic techniques, and theranostic therapies. Therapeutically, BNT has generated many novel nanocarriers (NCs) that each express specifically designed physiochemical properties that optimize their desired pharmacokinetic profile. NCs are also being integrated into nanoscale platforms that further enhance their delivery by controlling and prolonging their release profile. Nano-platforms are also proving to be highly efficient in tissue regeneration when combined with the appropriate growth factors. Regarding diagnostics, NCs are being designed to perform targeted delivery of luminescent tags and contrast agents that enhance the NC -aided imaging capabilities and resulting diagnostic accuracy of the presence of diseased cells. This technology has also been advancing the ability for surgeons to practice true precision surgical techniques. Incorporating therapeutic and diagnostic NC-components within a single NC can facilitate both functions, referred to as theranostics, which facilitates real-time in vivo tracking and observation of drug release events via enhanced imaging. Additionally, stimuli-responsive theranostic NCs are quickly developing as vectors for tumor ablation therapies by providing a model that facilitates the location of cancer cells for the application of an external stimulus. Overall, BNT is an interdisciplinary approach towards health care, and has the potential to significantly improve the quality of life for humanity by significantly decreasing the treatment burden for patients, and by providing non-invasive therapeutics that confer enhanced therapeutic efficiency and safety

Publisher

Walter de Gruyter GmbH

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing biomedical applications of bionanomaterials through omics approach;Synthesis of Bionanomaterials for Biomedical Applications;2023

2. Recent applications of nanomedicine in lung disease;Nanotechnology and Human Health;2023

3. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview;International Journal of Nanomedicine;2022-12

4. Camels’ biological fluids contained nanobodies: promising avenue in cancer therapy;Cancer Cell International;2022-09-07

5. Micro-Electromechanical Systems-based Sensors and Their Applications;Applied Science and Convergence Technology;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3