Affiliation:
1. Department of Biology, Faculty of Arts and Sciences , Kocaeli University , İzmit , Kocaeli, Turkey
Abstract
Abstract
Morning Glory (Ipomoea purpurea (L.) Roth.) is a climbing plant known for its ornamental properties and ease of cultivation in temperate climates. Quality and colour of flowers and leaves, especially in the production of ornamentals, are important parameters both for producers and for customers. This study aimed to investigate the changes in photosynthetic pigment, protein and dry matter content of in vitro-propagated I. purpurea following chitosan treatment with different polymerization degrees (DP) and to determine the indirect effect of this biopolymer on leaves of the plant. Nodal explants of I. purpurea were cultured in medium supplemented with 5, 10 and 20 mg L−1 concentrations of a chitosan oligomers mixture with a variable degree of polymerization (DP) ranging from 2 to 15 or chitosan polymer with DP of 70. It was found that both oligomeric and polymeric chitosan treatments increased chlorophyll-a contents in the leaves when compared to the chitosan-naïve control group. Polymeric chitosan stimulated chlorophyll-b and carotenoid synthesis more effectively than the oligomer mixture. Also, 10 mg L−1 polymeric chitosan better triggered total protein production and plant dry matter content in I. purpurea. The results of this study showed that, due to their stimulatory effects on photosynthetic pigment, protein and plant dry matter production, chitosan oligomers at low concentration and polymers at moderate concentration might be considered as safe and natural biostimulants for ornamental plants which could affect the plant’s attractiveness and commercial success.
Subject
Genetics,Molecular Biology,Biomedical Engineering,Molecular Medicine,Food Science,Biotechnology
Reference35 articles.
1. 1. Rihn A, Khachatryan H, Campbell B, Hall C, Behe B. Consumer preferences for organic production methods and origin promotions on ornamental plants: Evidence from eye-tracking experiments. Agric Econ 2016; 47: 599–608.
2. 2. England J, Talbot D. Ornamental plant production: The use of chemical plant growth regulators on protected crops (Horticulture Development Company, Fact Sheet 04/13), 2013. https://horticulture.ahdb.org.uk/download/3871/file
3. 3. Sajjad Y, Jaskani MJ, Asif M, Qasim M. Application of plant growth regulators in ornamental plants: A review. Pak J Bot 2017; 54(2): 327–333.
4. 4. Mata DA, Botto JF. Manipulation of light environment to produce high-quality Poinsettia plants. HortScience 2009; 44(3): 702–706.10.21273/HORTSCI.44.3.702
5. 5. Acemi A, Bayrak B, Çakır M, Demiryürek E, Gün E, El Gueddari NE, Özen F. Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cell Dev Biol Plant 2018; 54: 537–544.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献