The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix

Author:

Štampach F.1,Šťovíček P.2

Affiliation:

1. Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague,Kolejní 2, 16000 Praha, Czech Republic

2. Department of Mathematics, Faculty of Nuclear Science, Czech Technical University inPrague, Trojanova 13, 12000 Praha, Czech Republic

Abstract

Abstract A family T(ν), ν ∈ ℝ, of semiinfinite positive Jacobi matrices is introduced with matrix entries takenfrom the Hahn-Exton q-difference equation. The corresponding matrix operators defined on the linear hullof the canonical basis in ℓ2(ℤ+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1) for|ν| < 1. A convenient description of all self-adjoint extensions is obtained and the spectral problem is analyzedin detail. The spectrum is discrete and the characteristic equation on eigenvalues is derived explicitlyin all cases. Particularly, the Hahn-Exton q-Bessel function Jν(z; q) serves as the characteristic function ofthe Friedrichs extension. As a direct application one can reproduce, in an alternative way, some basic resultsabout the q-Bessel function due to Koelink and Swarttouw.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology,Algebra and Number Theory

Reference18 articles.

1. [1] L. D. Abreu, J. Bustoz, J. L. Cardoso: The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67 (2003)4241-4248.

2. [2] A. Alonso, B. Simon: The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory4 (1980) 251-270.

3. [3] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis, (Oliver & Boyd, Edinburgh, 1965).

4. [4] M. H. Annaby, Z. S. Mansour: On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankeltransforms, Math. Proc. Camb. Phil. Soc. 147 (2009) 47-67.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000267348000004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3

5. [5] B. M. Brown, J. S. Christiansen: On the Krein and Friedrichs extensions of a positive Jacobi operator, Expo. Math. 23 (2005)179-186.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3