Affiliation:
1. Trinity University, San Antonio, Texas 78212-7200, USA
Abstract
Abstract
Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as
where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = {0, 1, . . . , k − 1}. We study matrices A =
Pσ(ℓ)FℓQℓ and B =
QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A =
and B =
, where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.
Subject
Geometry and Topology,Algebra and Number Theory
Reference21 articles.
1. [1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.10.1090/S0002-9947-1963-0155841-7
2. [2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.10.1016/0024-3795(73)90049-9
3. [3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.10.1080/00401706.1973.10489052
4. [4] A. L. Andrew, Centrosymmetric matrices, SIAM Rev. 40 (1998) 697-698.10.1137/S0036144597328341
5. [5] A. Cantoni, F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275-288.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000314854900031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/0024-3795(76)90101-4