Complex model description and main capacitor sizing for the cross-coupled charge pump synthesis process

Author:

Marek Jan1,Hospodka Jiri1,Subrt Ondrej12

Affiliation:

1. Department of Circuit Theory , Czech Technical University in Prague , FEE, Technická 2, 166 27 Prague , Czech Republic

2. ASI Centrum, a company of the Swatch group, Novodvorská 994, 142 21 Prague , Czech Republic

Abstract

Abstract This paper presents a dynamic part of the pump stage model of the cross-coupled charge pump. The complex model has been used for both the estimation of the N-stage pump properties in a wide range of the input parameters and derivation of equations for synthesis process, as the main capacitor sizing, which is also mentioned in the article. Dynamic part of the model (pump stage capacitances) is determined from Ward’s capacitance piece-wise model through the BSIM MOSFET model equations. Main capacitor and load capacitor sizing are based on the time response characteristics fulfilling the system behavior in time. Guideline on the MOS transistor sizing as the nonlinear main pump capacitor and specification of the diode transistor for the design process are also clarified. The characteristics of the proposed circuit have been verified in the professional design environment Mentor graphics and analysis algorithm based on the state-space description of the inner complex model was programmed in Maple SW. The main benefit is to offer the alternative way of the charge pump synthesis by using the complex model and symbolic description of all formulae to find the required pump parameters without long-time simulation process.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Coupled Charge Pump Synthesis Based on Full Transistor-Level;Advances in Electrical and Electronic Engineering;2019-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3