Modelling of electrical properties of mn-zn ferrites taking into account the frequency of the occurrence of the dimensional resonance

Author:

Todorova Teodora Plamenova1,Valchev Vencislav Cekov1,den Bossche Alex Van2

Affiliation:

1. Department of Electronics and Microelectronics, Technical University of Varna, 1 Studentska Str., Varna , Bulgaria

2. Electrical Energy Laboratory, Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Technologiepark 913, Zwijnaarde, Ghent , Belgium

Abstract

Abstract Besides their magnetic properties, Mn-Zn ferrites are also characterized by appreciable electrical properties. This electro- magnetic nature of Mn-Zn ferrites material properties causes a dimensional resonance to occur in samples. The latter hinders measurements of the frequency dependences of intrinsic permittivity and electrical conductivity. In the paper, we present a sign in measurement results that shows the frequency range in which dimensional resonance has already occurred. Above this range, properties extracted from measurements are not intrinsic any longer. We refer to the sign to determine the last point of the measurement data set that is used as an input for an equivalent circuit modelling of the electrical properties. This “last point” criterion helps to exclude the possibility of modelling apparent properties instead of intrinsic ones. The results obtained show that the frequency dependent electrical properties may be well modeled even if the upper limit of the input frequency range to the curve fitting is below the frequency range in which the dimensional resonance occurs.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3