Circular Radon Transform Inversion Technique in Synthetic Aperture Ultrasound Imaging: an Ultrasound Phantom Evaluation

Author:

Tasinkevych Jurij,Trots Ihor

Abstract

Abstract The paper presents an overview of theoretical aspects of ultrasound image reconstruction techniques based on the circular Radon transform inversion. Their potential application in ultrasonography in a similar way as it was successfully done in the x-ray computer tomography is demonstrated. The methods employing Radon transform were previously extensively explored in the synthetic aperture radars, geophysics, and medical imaging using x-ray computer tomography. In this paper the main attention is paid to the ultrasound imaging employing monostatic transmit-receive configuration. Specifically, a single transmit and receive omnidirectional source placed at the same spatial location is used for generation of a wide-band ultrasound pulse and detection of back-scattered waves. The paper presents derivation of the closed-form solution of the CRT inversion algorithms by two different approaches: the range-migration algorithm (RMA) and the deconvolution algorithm (DA). Experimentally determined data of ultrasound phantom obtained using a 32-element 5 MHz linear transducer array with 0.48 mm element pitch and 0.36 mm element width and 5 mm height, excited by a 2 sine cycles burst pulse are used for comparison of images reconstructed by the RMA, DA, and conventional synthetic aperture focusing technique (SAFT). It is demonstrated that both the RMA and SAFT allow better lateral resolution and visualization depth to be achieved as compared to the DA approach. Comparison of the results obtained by the RMA method and the SAFT indicates slight improvement of the lateral resolution for the SAFT of approximately 1.5 and 1.6% at the depth of 12 and 32 mm, respectively. Concurrently, however, the visualization depth increase for the RMA is shown in comparison with the SAFT. Specifically, the scattered echo amplitude increase by the factor of 1.36 and 1.12 at the depth of 22 and 32 mm is demonstrated. It is also shown that the RMA runs about 30% faster than the SAFT and about 12% faster than the DA method

Publisher

Walter de Gruyter GmbH

Subject

Acoustics and Ultrasonics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic reconstruction approach for the circular radon transform;6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL APPLICATIONS IN ENGINEERING;2023

2. Modeling of Problem Reconstruction Function by its Integral Data on a Family of Circles;2021 International Conference on Information Science and Communications Technologies (ICISCT);2021-11-03

3. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions;Optics Express;2021-09-23

4. Approximate filtered back-projection algorithm for plane curves in tomography problems;Journal of Physics: Conference Series;2021-01-01

5. ω-k Algorithm for Sparse-Transmit Sparse-Receive Diverging Beam Synthetic Aperture Transmit Scheme;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3