Preliminary geological work, based on remote sensing analysis, using artificially enhanced satellite data

Author:

Adamek Katarzyna1ORCID,Lupa Michał1ORCID,Leśniak Andrzej1ORCID,Ryznar Jakub2ORCID,Ochtyra Adrian3ORCID,Marcinkowska-Ochtyra Adriana3ORCID,Wyczałek-Jagiełło Michał4

Affiliation:

1. Department of Geoinformatics and Applied Computer Science Faculty of Geology, Geophysics and Environmental Protection , AGH University of Krakow , Krakow , Poland

2. Department of Environmental Analysis, Mapping and Economic Geology, Faculty of Geology, Geophysics and Environmental Protection , AGH University of Krakow , Krakow , Poland

3. Department of Geoinformatics, Cartography and Remote Sensing Warsaw, Faculty of Geography and Regional Studies , University of Warsaw , Warsaw , Poland

4. Geomatic Michał Wyczałek-Jagiełło , Poznan , Poland

Abstract

Abstract This study aims to identify areas that present similar spectral characteristics to collected rock samples through the use of satellite imagery and spectral analysis. The results indicate that pixels marked in the satellite images exhibit similarities to the spectral characteristics of the samples. Misclassified objects or areas may be included in the results due to mixed pixels and spatial resolution limitations. The similarities identified could result from the region’s mineral composition of building materials, bare land, or dry vegetation. The averaged spectral curve patterns of the samples show similarity overall, but they are not identical, as reflected by the tenth quantile of the similarity coefficient. This research provides a valuable support tool for preliminary geological assessment, and information relating to vast and challenging-to-access parts of prospective areas for further investigation.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous)

Reference22 articles.

1. Bannari, A, Morin, D, Bonn, F & Huete, A 1995, ‘A review of vegetation indices’, Remote sensing reviews, vol. 13, no. (1–2), pp. 95–120.

2. Baudet, D, Hanon, M, Lemonne, E, Theunissen, K, Buyagu, S, Dehandschutter, J, Ngizimana, W, Nsengiyumva, P, Rusanganwa, J & Tahon, A 1989, ‘Lithostratigraphie du domaine sédimentaire de la chaîne Kibarienne au Rwanda’, Annales de la Société géologique de Belgique, vol. 112.

3. Bedini, E 2011, ‘Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data’, Advances in Space Research, vol. 47, no. 1, pp. 60–73.

4. Collins, CB, Beck, JM, Bridges, SM, Rushing, JA & Graves, SJ ‘Deep learning for multisensor image resolution enhancement’, Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, pp. 37–44.

5. Crowley, J, Hubbard, B & Mars, J 2003, ‘Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data’, Remote Sensing of Environment, vol. 87, no. 2–3, pp. 345–358.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3