Vessel Crowd Movement Pattern Mining for Maritime Traffic Management

Author:

Wen Rong1,Yan Wenjing1

Affiliation:

1. Planning and Operations Group, Singapore Institute of Manufacturing Technology , Singapore , Singaapore

Abstract

Abstract The goal of maritime traffic management is to provide a safe and efficient maritime environment for different type of vessels facilitating port logistics and supply chain business. However, current maritime traffic management mainly relies on the massive individual vessel’s data for decision making. Lack of macro-level understanding of vessel crowd movement around port challenges maritime safety and traffic efficiency. In this paper, we describe a spatio-temporal data mining method to discover crowd movement patterns of vessels from their short-term history data. The method first captures vessels’ crowd movement features by building vessels’ tracklets with their speed and location. A movement vector clustering algorithm is developed to find different travel behaviors for different group of vessels. With nonparametric regression on the classified vessel movement vectors which represent the crowd travel behaviors, an overall vessel movement pattern can then be discovered. In this research, we tested real trajectory data of vessels near Singapore ports. Comparing with the actual massive vessel movement data, we found that this method was able to extract vessels’ crowd movement information. The hotspots on risk area in terms of vessel traffic and speed can be identified. The method can be used to provide decision-making support for maritime traffic management.

Publisher

Walter de Gruyter GmbH

Subject

Management of Technology and Innovation,Management Science and Operations Research,Transportation,Automotive Engineering,Civil and Structural Engineering,Business and International Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3