Affiliation:
1. Faculty of Electrical and Computer Engineering, Urmia University , Urmia , Iran
Abstract
Abstract
Primary recognition of heart diseases by exploiting computer aided diagnosis (CAD) machines, decreases the vast rate of fatality among cardiac patients. Recognition of heart abnormalities is a staggering task because the low changes in ECG signals may not be exactly specified with eyesight. In this paper, an efficient approach for ECG arrhythmia diagnosis is proposed based on a combination of discrete wavelet transform and higher order statistics feature extraction and entropy based feature selection methods. Using the neural network and support vector machine, five classes of heartbeat categories are classified. Applying the neural network and support vector machine method, our proposed system is able to classify the arrhythmia classes with high accuracy (99.83%) and (99.03%), respectively. The advantage of the presented procedure has been experimentally demonstrated compared to the other recently presented methods in terms of accuracy.
Subject
Biomedical Engineering,Biophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献