The Impact of Troposphere Correction for Designation of the Ellipsoidal Height of Aircraft at Approach to Landing Procedure

Author:

Krasuski Kamil1,Savchuk Stepan1

Affiliation:

1. Institute of Navigation , Military University of Aviation , ul. Dywizjonu 303 nr 35, 08-521 Dęblin , Poland

Abstract

Abstract The paper reports on research into the effect of the troposphere correction on the accuracy of the vertical component determination of an aircraft’s flight as it approaches landing at Deblin Airport. The article presents ellipsoidal height value of the aircraft when the troposphere correction is considered in navigational calculations and when it is not taken into account. Accuracy of the aircraft positioning in the vertical plane using the SPP method is determined. The study shows that application of the troposphere correction in navigational calculations increases the accuracy of the vertical component determination by 25%–32%. The article and the study may serve as a valuable source of information for pilots, flight instructors and aircraft crews during training in operation and implementation of GNSS in aviation.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

1. 1. Abdelfatah M. A, Mousa A.E., El-Fiky G. S. (2018), Assessment oftropospheric delay mapping function models in Egypt: Using PTD database model, NRIAG Journalof Astronomy and Geophysics, 7(1), 47–51.

2. 2. Auh S-C., Lee S-B. (2018), Analysis of the Effect of Tropospheric Delay on Orthometric Height Determination at High Mountain, KSCE Journal of Civil Engineering, 22, 4573.

3. 3. Boon F.J.G., de Jonge P.J., Tiberius C.C.J.M. (1997), Precise aircraft positioning by fast ambiguity resolution using improved troposphere modeling, Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, 1877–1884.

4. 4. Collins J.P. (1999), Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System, University of New Brunswick, Department of Geodesy and Geomatics Engineering, Technical Report no. 203.

5. 5. Ćwiklak J., Jafernik H. (2010), The monitoring system for aircraft and vehicles of public order services based on GNSS, Annual of Navigation, 16, 15–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3