Affiliation:
1. Faculty of Mechanical Engineering , Bialystok University of Technology , ul. Wiejska 45c, 15-351 Białystok , Poland
Abstract
Abstract
The article presents a mathematical model describing the operation of a piston pneumatic air engine. Compressed air engines are an alternative to classic combustion solutions as they do not directly emit toxic exhaust components. In the study, a modified internal combustion piston engine was adopted as pneumatic engine. The mathematical model was divided on the two subsystems, that is, mechanical and pneumatic. The mechanical subsystem describes a transformation of compressed air supply process parameters to energy transferred to the piston and further the conversion of the translational to rotary motion; in turn, in the pneumatic part, the lumped elements method was used. Calculations were carried out using the Matlab-Simulink software, resulting in the characteristics of external and economic indicators. The presented mathematical model can be ultimately developed with additional elements, such as the intake or exhaust system, as well as timing system control.
Subject
Mechanical Engineering,Control and Systems Engineering
Reference49 articles.
1. 1. A policy framework for climate and energy in the period from 2020 to 2030. 2014. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions.
2. 2. Allam S., Zakaria M. (2018), Experimental investigation of compressed air engine performance, International Journal of Engineering Inventions, 7(1), 13–20.
3. 3. Badr O., Probert S.D., O’Callaghan P.W. (1985), Multi-vane expanders: internal-leakage losses, Applied Energy, 20(1), 1–46.
4. 4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1), 1–6.
5. 5. Borawski A. (2016), Suggested research method for testing selected tribological properties of friction components in vehicle braking systems, Acta Mechanica et Automatica, 10(3), 223–226.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献