DAMAGE MODELING IN GRADED LAYER SYSTEM

Author:

Petaś Michał,Mróz Krzysztof,Doliński Krzysztof

Abstract

Abstract The simplified approach to the modelling of low cycle fatigue (LCF) of functionally graded materials (FGM) based on the continuum mechanics is presented. The fatigue damage model takes into account the mechanical part of the load and a constant service temperature. The concept of FGM as a particle-reinforced metal-matrix composite with gradual change of the reinforcement fraction is used. The FGM is considered as a material consisting of homogeneous layers containing different volume fractions of the reinforcement. The variation of the reinforcement fraction changes the material properties for each layer. The different material properties are obtained according to modified rule of mixture. Since the fatigue damage of metal matrix composites is strongly influenced by the inelastic deformation of the metallic matrix, the constitutive equations of LCF damage model are taken into consideration. The combined isotropic/ kinematic hardening model with linear behaviour of isotropic and kinematic parts of hardening is adopted. The damage scalar parameter is associated with the plastic energy dissipation which is used to update the material properties. The fatigue damage model presented in this paper is applied to the fatigue damage analysis of the cooling channel of thruster used in space shuttles and rockets.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3