Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching

Author:

Smoliński Tomasz1,Rogowski Marcin1,Brykała Marcin1,Pyszynska Marta1,Chmielewski Andrzej G.1

Affiliation:

1. Institute of Nuclear Chemistry and Technology, 16 Dorodna St., Warsaw , Poland

Abstract

Abstract Scientifi c objective of this work was elaboration of radiometric method for the development of hydrometallurgical process for recovery of Cu from the copper ore. A neutron activation analysis (NAA) was identifi ed as a very convenient tool for the process investigation. The samples of copper ore were activated in a nuclear reactor. The parameters of the neutron activation were calculated. Radioisotope 64Cu was selected as an optimal tracer, and it was used for the investigation of the leaching process. During the experiments, various processes applying leaching media such as sulphuric acid, nitric acid, and organic acids were investigated. The recovery of the metals using sulphuric acid was insuffi cient, around 10%. Investigated organic media also did not meet expectations. The best results were obtained in experiments with nitric acid. Up to 90% of Cu and other metals were extracted from the copper ore. Copper concentration calculations obtained by NAA were confi rmed by inductively coupled plasma mass spectrometry (ICP-MS) technique. Both techniques gave comparable results, but the advantage of the NAA is a possibility for easy online measurements without shutting down or disturbing the system.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference44 articles.

1. 1. KGHM Polska Miedź S.A. (2016). Integrated report for 2015. Retrieved August 30, 2017, from http://kghm.com/pl/node/4990.

2. 2. KGHM Polska Miedź S.A. (2016). KGHM Polska Miedź S. A. Strategy for 2017-2021 with an outlook to 2040. Retrieved November 10, 2017, from kghm.com/sites/kghm2014/files/kghm_strategy_2017-2021_1.pdf.

3. 3. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.10.2478/amsc-2013-0068

4. 4. Gupta, C. K., & Mukherjee, T. K. (1990). Hydrometallurgy in extraction processes (Vol. 1). Boca Raton: CRC Press.

5. 5. Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1/3), 127-162.10.1016/0304-386X(92)90081-A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3