Radionuclide neutron source trajectories in the closed nuclear fuel cycle

Author:

Stanisz Przemysław1,Cetnar Jerzy1,Oettingen Mikołaj1

Affiliation:

1. Department of Nuclear Energy, Faculty of Energy and Fuels , AGH University of Science and Technology 30 A. Mickiewicza Ave., 30-059 Krakow , Poland

Abstract

Abstract The highest efficiency in the usage of nuclear energy resources can be implemented in fast breeder reactors of generation IV. It is achieved thanks to the ability of consuming minor actinides (MAs) in energy production. One of the options to use this benefit is full recycling of MAs to close the nuclear fuel cycle. Monte Carlo burn up (MCB), an integrated burn-up calculation code, deals with the complexity of the burn-up process which is applied to the European Lead-cooled Fast Reactor (ELFR). MCB uses continuous energy representation of cross section and spatial effects of full core reactor model; however, it automatically calculates nuclide production in all possible reactions or decay channels. Multi-recycling of MAs can cause an intensified build-up of curium, berkelium and californium. Some of their isotopes are strong neutron emitters from spontaneous fission, which hinders fuel recycling. The implementation of a novel methodology for trajectory period folding allows us to trace the life cycle of crucial MAs from the beginning of the reactor life towards the state of adiabatic equilibrium. The result of the analysis performed is presented, showing the sources of strong contribution to the neutron production rate. The parametric sensitivity analysis method for selected nuclide reactions is applied, revealing sensitivity of transmutation chains for the production of neutron emitter isotopes.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3