Affiliation:
1. Department of Nuclear Energy, Faculty of Energy and Fuels , AGH University of Science and Technology 30 A. Mickiewicza Ave., 30-059 Krakow , Poland
Abstract
Abstract
The highest efficiency in the usage of nuclear energy resources can be implemented in fast breeder reactors of generation IV. It is achieved thanks to the ability of consuming minor actinides (MAs) in energy production. One of the options to use this benefit is full recycling of MAs to close the nuclear fuel cycle. Monte Carlo burn up (MCB), an integrated burn-up calculation code, deals with the complexity of the burn-up process which is applied to the European Lead-cooled Fast Reactor (ELFR). MCB uses continuous energy representation of cross section and spatial effects of full core reactor model; however, it automatically calculates nuclide production in all possible reactions or decay channels. Multi-recycling of MAs can cause an intensified build-up of curium, berkelium and californium. Some of their isotopes are strong neutron emitters from spontaneous fission, which hinders fuel recycling. The implementation of a novel methodology for trajectory period folding allows us to trace the life cycle of crucial MAs from the beginning of the reactor life towards the state of adiabatic equilibrium. The result of the analysis performed is presented, showing the sources of strong contribution to the neutron production rate. The parametric sensitivity analysis method for selected nuclide reactions is applied, revealing sensitivity of transmutation chains for the production of neutron emitter isotopes.
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference15 articles.
1. 1. Artioli, C., Grasso, G., & Petrovich, C. (2010). A new paradigm for core design aimed at the sustainability of nuclear energy: the solution of the extended equilibrium state. Ann. Nucl. Energy, 37, 915–922. https://doi.org/10.1016/j.anucene.2010.03.016.10.1016/j.anucene.2010.03.016
2. 2. Oettingen, M., Cetnar, J., & Mirowski, T. (2015). The MCB code for numerical modeling of fourth generation nuclear reactors. Comput. Sci., 16(4), 329–350.
3. 3. Stanisz, P., Oettingen, M., & Cetnar, J. (2016). Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state. Nucl. Eng. Des., 301, 341–352. https://doi.org/10.1016/j.nucengdes.2016.02.025.10.1016/j.nucengdes.2016.02.025
4. 4. Stanisz, P., Cetnar, J., & Domańska, G. (2015). Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste. Nukleonika, 60(3), 581–590. DOI: 10.1515/nuka-2015-0111.10.1515/nuka-2015-0111
5. 5. Cetnar, J., Stanisz, P., & Domańska, G. (2013). Adiabatic fuel cycle assessment of LFR core with MOX using MCB system. Study for the LEADER project of European Union’s 7th FP EURATOM. Kraków: AGH University, WEiP. (KEJ/2013/4).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献