Beta-backscattering Thickness-meter Design and Evaluation with Fuzzy TOPSIS Method

Author:

Arjhangmehr Afshin1,Mohammadzadeh Mohammad1,Hossein Feghhi Seyed Amir1,Hassanpour Saeed Tasouji2

Affiliation:

1. Department of Radiation Application, Shahid Beheshti University G. C, Tehran, Iran, Tel: +98 912 439 2064

2. Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Abstract An industrial gauge for measuring thickness of a gold coating layer deposited on a steel base through detection of the backscattered beta particles has been described. 3H, 14C and 63Ni pure beta emitters have been tested as the radioisotopic sources of the system individually in a fixed geometry. Analytical calculations have been performed in each case. Furthermore, simulations based on Monte Carlo stochastic technique (MCNP) have been processed. The obtained results from both methods have been compared to define the sensitivity of the system in each case. Finally for the first time, fuzzy TOPSIS method has been used for choosing the best source in the defined geometry for manufacturing, considering the following three criteria: (a) saturation thickness, (b) precision and (c) sensitivity. Results have shown that 3H source is the best alternative to the introduced measuring system.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Technical Overview on Beta-Attenuation Method for the Monitoring of Particulate Matter in Ambient Air;Aerosol and Air Quality Research;2022

2. Influence of the Mechanical Error on Performance of Beta Thickness Gauging and the Prediction of System Operation Time;Russian Journal of Nondestructive Testing;2020-04

3. Effects of atomic grain boundary structures on primary radiation damage in α-Fe;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3