Synthesis, effect of γ-ray and electrical conductivity of uranium doped nano LiMn2O4 spinels for applications as positive electrodes in Li-ion rechargeable batteries

Author:

El-Metwaly Fouad,Abou-Sekkina Morsi1,Saad Fawaz2,Khedr Abdalla

Affiliation:

1. Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

2. Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

Abstract LiMn2O4 is an attractive candidate cathode material for Li-ion rechargeable batteries, but it suffers from severe capacity fading, especially at higher temperature (55 °C) during charging/discharging processes. Recently, many attempts have been made to synthesize modified LiMn2O4. In this work, a new study on the synthesis of pure and U4+-doped nano lithium manganese oxide [LiMn2−x UxO4, (x = 0:00, 0.01, 0.03)] via solid-state method was introduced. The synthesized LiMn1:97U0:03O4 was irradiated by γ-radiation (10 and 30 kGy). The green samples and the resulting spinel products were characterized using thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared (IR), and scanning electron microscopy (SEM) measurements. XRD and SEM studies revealed nano-sized particles in all prepared samples. Direct-current (DC) electrical conductivity measurements indicated that these samples are semiconductors and the activation energies decrease with increasing rare-earth U4+ content and γ-irradiation. ΔEa equals to 0.304 eV for LiMn1:99U0:01O4, ΔEa is 0.282 eV for LiMn1:97U0:03O4 and decreases to ΔEa = 0:262 eV for γ-irradiated LiMn1:97U0:03O4 nano spinel. The data obtained for the investigated samples increase their attractiveness in modern electronic technology.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3