Comparative Enantioseparation of Amlodipine by HPLC and Capillary Electrophoresis

Author:

Cârje Anca Gabriela1,Balint Alina1,Muntean Daniela-Lucia1,Hancu Gabriel1,Ion Valentin1,Imre Silvia1

Affiliation:

1. University of Medicine and Pharmacy from Tirgu Mures , Romania

Abstract

Abstract Objective: The purpose of this study was to separate the enantiomers of amlodipine by High Performance Liquid Chromatography (HPLC) using ovomucoid (OVM) as chiral selector, respectively by Capillary Electrophoresis (CE) using cyclodextrines and to evaluate the analytical performance of the both proposed methods. Material and methods: HPLC enantioseparation of amlodipine was performed on an HPLC Agilent Technologies 1100 series using as chiral stationary phase an Ultron ES OVM, 150x4.6 mm column with ovomucoid as chiral selector. The stereoselective CE analysis of amlodipine was achieved on Agilent Technologies 7100 CE using uncoated fused-silica capillaries 48 cm x 50 mm and different type of cyclodextrins as chiral selectors. Results: A mobile phase consisting of 80% Na2HPO4 10 mM at a pH level of 5.0 and 20% ACN, isocratic elution at a flow of 1 ml/min turned to be the optimal experimental conditions for HPLC analysis (R=5.51; α=1.71) with retention times shorter than 10 minutes for the two isomers, tR (S-AML) = 4.63 (min); tR (R-AML) = 5.54 (min). The migration times for amlodipine enantiomers were tm (S-AML) = 8.15 (min) and tm (R-AML)= 8.45 (min) and the optimum CE conditions have proven to be a buffer solution containing 25 mM H3PO4 at pH 3.0 and 20 mM α-CD as chiral selector and a capillary temperature set at 15°C (R=1.51; α=1.03). Conclusion: The analytical performances of the chromatographic method using OVM as chiral selector are superior to the electrophoretic analysis method but the CE method is more economical and may represent an alternative to the HPLC chromatographic separation.

Publisher

Walter de Gruyter GmbH

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3