Affiliation:
1. Faculty of Applied Physics and Mathematics, Gdańsk University of Technology , Narutowicza 11/12 80-233 Gdańsk Poland
Abstract
Abstract
In this short paper, I recall the history of dealing with the lack of compactness of a sequence in the case of an unbounded domain and prove the vanishing Lions-type result for a sequence of Lebesgue-measurable functions. This lemma generalizes some results for a class of Orlicz–Sobolev spaces. What matters here is the behavior of the integral, not the space.
Reference13 articles.
1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Pure Appl. Math. (Amst.), 140, Elsevier/Academic Press, Amsterdam, 2003.
2. C.O. Alves and M.L.M. Carvalho, A Lions type result for a large class of Orlicz-Sobolev space and applications, Mosc. Math. J. 22 (2022), no. 3, 401–426.
3. C.O. Alves, G.M. Figueiredo, and J.A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal. 44 (2014), no. 2, 435–456.
4. S. Bahrouni, H. Ounaies, and O. Elfalah, Problems involving the fractional g-Laplacian with lack of compactness, J. Math. Phys. 64 (2023), no. 1, Paper No. 011512, 18 pp.
5. G. Barletta and A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no.1, 25–60.