Affiliation:
1. Department of Mathematics, Faculty of Sciences , Ibn Tofail University , , Kenitra , Morocco
2. Department of Mathematics, Faculty of Sciences , Chouaib Doukkali University , , El Jadida , Morocco
Abstract
Abstract
Let S be a semigroup, and let φ, ψ: S → S be two endomorphisms (which are not necessarily involutive). Our main goal in this paper is to solve the following generalized variant of d’Alembert’s functional equation
f
(
x
ϕ
(
y
)
)
+
f
(
ψ
(
y
)
x
)
=
2
f
(
x
)
f
(
y
)
,
x
,
y
∈
S
,
f\left( {x\varphi \left( y \right)} \right) + f\left( {\psi \left( y \right)x} \right) = 2f\left( x \right)f\left( y \right),\,\,\,\,\,\,x,y\, \in \,S,
where f : S → ℂ is the unknown function by expressing its solutions in terms of multiplicative functions. Some consequences of this result are presented.
Reference15 articles.
1. [1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, New York, 1989.10.1017/CBO9781139086578
2. [2] M. Ayoubi and D. Zeglami, D’Alembert’s functional equations on monoids with an anti-endomorphism, Results Math. 75 (2020), no. 2, Paper No. 74, 12 pp.10.1007/s00025-020-01199-z
3. [3] A.L. Cauchy, Cours d’Analyse de L’École Royale Polytechnique. Première Partie: Analyse Algébrique, De L’Imprimerie Royale, Paris, 1821.
4. [4] A. Chahbi, B. Fadli, and S. Kabbaj, A generalization of the symmetrized multiplicative Cauchy equation, Acta Math. Hungar. 149 (2016), no. 1, 170–176.
5. [5] J. d’Alembert, Addition au Mémoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin 1750 (1750), 355–360.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献