Affiliation:
1. Department of Mathematics , E.N.S.A.M Moulay ISMAÏL University , B.P: 15290 Al Mansour Meknès , Morocco
Abstract
Abstract
Let S be a semigroup and α, β ∈ ℝ. The purpose of this paper is to determine the general solution f : ℝ2 → S of the following parametric functional equation
f
(
x
1
+
x
2
+
α
y
1
y
2
,
x
1
y
2
+
x
2
y
1
+
β
y
1
y
2
)
=
f
(
x
1
,
y
1
)
f
(
x
2
,
y
2
)
,
f\left( {{x_1} + {x_2} + \alpha {y_1}{y_2},{x_1}{y_2} + {x_2}{y_1} + \beta {y_1}{y_2}} \right) = f\left( {{x_1},{y_1}} \right)f\left( {{x_2},{y_2}} \right),
for all (x
1, y
1), (x
2, y
2) ∈ ℝ2, that generalizes some functional equations arising from number theory and is connected with the characterizations of the determinant of matrices.
Reference15 articles.
1. [1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31, Cambridge University Press, Cambridge, 1989.
2. [2] Y. Aissi and D. Zeglami, D’Alembert’s matrix functional equation with an endomorphism on abelian groups, Results Math. 75 (2020), no. 4, Paper No. 137, 17 pp.10.1007/s00025-020-01265-6
3. [3] Y. Aissi, D. Zeglami, and M. Ayoubi, A variant of d’Alemberts matrix functional equation, Ann. Math. Sil. 35 (2021), no. 1, 21–43.
4. [4] M. Akkouchi and M.H. Lalaoui Rhali, General solutions of some functional equations, Bol. Mat. 12 (2005), no 1, 57–62.
5. [5] L.R. Berrone and L.V. Dieulefait, A functional equation related to the product in a quadratic number field, Aequationes Math. 81 (2011), no. 1–2, 167–175.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献